化工搅拌器运行故障分析。
1、减速机运转时有异声。
原因:滚动轴承损坏、圆锥滚子轴承间隙过大、齿轮或蜗杆副磨损严重。
2、齿轮箱或轴承温升高。
原因:润滑油过多或润滑油过少、不来油或润滑情况不好、轴承损坏、圆锥滚子轴承间隙调整过紧。
磁力搅拌器的定价是消费者和生产者所关注的问题。定价过高,消费者接受不了;反之,生产者接受不了。所以为商品制定一个适当的定价不是一件简单的事情。那么影响磁力搅拌器定价的具体因素是什么?
1、成本:商品价值是决定商品价格的基础。显然,生产成本是决定商品价格的一个关键因素。
2、供求关系:供求关系是影响厂家商品定价的一个关键因素。此外,在供求关系中,厂家产品商品定价还受到供应和求购弹性的影响。
关于机械搅拌器功率的测定方法。
1、应变测量法:对于功率较大的搅拌体系,采用动态应变仪测量搅拌轴的扭矩,并以此来计算搅拌功率。其基本原理是搅拌轴的扭矩大小与切应变成正比,只要测出搅拌轴外表面上切应变大小,就能计算出扭矩。根据扭矩与切应变之间的换算关系,经数据处理后可方便地得出搅拌轴的扭矩值,再扣除用空载实验测出的密封、轴承等处的摩擦扭矩,就可得到搅拌时实耗的扭矩大小。
2、对于规模较小的机械搅拌装置体系大家可以这样当电动机工作时,作用在电动机转子上的电磁矩和作用于电动机定子上的电磁矩总是大小相等,方向相反的。所以只要测出作用于定子上的扭矩就等于测得了作用于转子上的扭矩,再扣除转子轴承上的摩擦扭矩后,就能测出搅拌的实耗扭矩。由扭矩和搅拌转速便可以计算出机械搅拌器搅拌功率。
你了解机械搅拌器的打孔技巧是如何操作的吗?
1、搅拌器打孔分支不能采用电焊工具,因为那样将破坏搅拌器的内衬塑料,分支管的连接应采用沟槽管件连接。
2、打孔过程中内衬的塑料残渣易落入搅拌器原管道之中,因此在操作过程中应多加注意,否则会造成末端用水点堵塞。
3、打孔时的内衬塑料虽然比较软,但强行用刚性的钻头容易破坏搅拌器,且边角不易齐整,建议结合美工刀进行开孔。
机械搅拌器设计的一般程序。
1、大家在设计搅拌器时,可按用户设备现有的D/DT值,以及客户对搅拌时间、搅拌程度的要求,选定若干个不同转速下的扭矩或功率要求。其中搅拌程度受物料粘度差、比重差,是否非牛顿流体等因素制约。
2、选定合理的叶轮安装高度并结合设备情况,估计近似的搅拌轴长。
化工搅拌器其实就是一种强制搅拌机,在操作上是简单的,实行全自动化控制,也是较为省心,只要有现场人员进行简单的培训就可以驾驭。为了能够较好的了解化工搅拌器的使用,下面就由小编来给大家先容一下化工搅拌器在污水处理中的应用。
化工搅拌器在污水处理过程中,污泥的处理是较为重要的环节。污泥处理是目前污水处理过程中难题,主要是污水处理事业起步是比较晚的。为了加快水污染的治理进程,能较好解决污泥处理难题的污泥脱水设备的出现。化工搅拌器为工作于污水处理的工作人员排忧解难。
一、搅拌设备的维护
1、轴承的润滑,注入的润滑油须清洁,密封须良好。
2、新安装的轮箍容易发生松动须经常进行检查。
3、注意机器各部位的工作是否正常。
4、注意检查易磨损件的磨损程度,注意替换被磨损的零件。
5、放活动装置的底架平面,应出去灰尘等物以免机器遇到不能破碎的物料时活动轴承不能在底架上移动,以致发生严重事故。
6、轴承油温升高,应停车检查原因加以清理。
7、转动齿轮在运转时若有冲击声应停车检查并清理。
1、使用前的准备
1.1使用前,首先检查随整机的配件是否齐全,然后按顺序先装好夹具,检查搅拌器工作情况是否正常。
1.2 根据反应的溶剂量大小,选取合适的容器和合适的搅拌子,容器置于镀铬盘正中,检查搅拌子工作情况。
2、操作过程
2.1 将搅拌子小心置于容器中,避免直接投入损坏容器。
2.2把所需搅拌的容器放在镀铬盘正中,加入反应的溶液。
2.3插上仪器上的插头,接通电源并打开电源调速开关,指示灯亮,即开始工作。
电动搅拌器在电动搅拌器的使用过程中也常遇到一些电动搅拌器所产生的自身的故障,最典型的是电动搅拌器的异常声响问题。出现这种故障时,电动搅拌器的内部系统设备会发出较大的声响,十几米处就能听见,检查电动搅拌器中的电流均在正常范围内,简单的检查也很难找到问题。可以将整台电动搅拌器设备分成机械密封总成、齿轮箱和电机三个部件,对电动搅拌器进行单独的分解检查和分析处理。
1、电动搅拌器中电机故障的检查,分析及处理
电动搅拌器在工作时的故障主要表现有:在分解电动搅拌器的电机前,电动搅拌器会进行空转,以找出电动搅拌器产问题在哪。如果电动搅拌器发了的异常声响比较明示,而且电动搅拌器的电机轴的轴套处发生异常声音的话,电动搅拌器的电机空运转不到2分钟,电动搅拌器的内部轴的温度就会达到几十度,会很明示的烫手。在电动搅拌器的轴承内圈因点蚀产生梨皮状点蚀区域,表面粗糙,电动搅拌器的外部看起来暗淡,无光泽,可以明显的看到电动搅拌器轴承上的点蚀孔;电动搅拌器的轴承内圈会因点蚀产生梨皮点蚀状的区域,而且电动搅拌器的表面粗糙,电动搅拌器中的骨架油封内圈破损;电动搅拌器中的轴承内圈和电动搅拌器中的轴套与对应的轴颈处有“跑圈”形成的暗斑。
反应釜搅拌器一个好的选型方法最好具备两个条件,一是选择结果合理,一是选择方法简便,而这两点却往往难以同时具备。
由于液体的粘度对搅拌状态有很大的影响,所以根据搅拌介质粘度大小来选型是一种基本的方法。几种典型的搅拌器都随粘度的高低而有不同的使用范围。随粘度增高的各种搅拌器使用顺序为推进式、涡轮式、浆式、锚式和螺带式等,这里对推进式的分得较细,提出了大容量液体时用低转速,小容量液体时用高转速。这个选型图不是绝对地规定了使用浆型的限制,实际上各种浆型的使用范围是有重叠的,例如浆式由于其结构简单,用挡板可以改善流型,所以在低粘度时也是应用得较普遍的。而涡轮式由于其对流循环能力、湍流扩散和剪切力都较强,几乎是应用最广的一种浆型。
磁力搅拌器是有机化学实验必不可少的仪器之一,它可使反应混合物混合得更加均匀,反应体系的温度更加均匀,从而有利于化学反应的进行,特别是非均相反应。
在实验室中使用的搅拌器主要有两种:顶置式搅拌器和磁力搅拌器。其中,磁力搅拌器适用于混合搅拌较稀的液体物质,在实验室中使用较为普遍。
1、在第一次使用磁力搅拌器时,先对照仪器说明书检查仪器所带配件是否齐全,譬如搅拌子、电源线等;
2、磁力搅拌器在调速时应由低速逐步调至高速,最好不要高速档直接起动,以免搅拌子不同步,引起跳动现象;
磁力搅拌器利用磁性物质同性相斥的特性,通过不断变换基座的两端的极性来推动磁性搅拌子转动,通过磁性搅拌子的转动带动样本旋转,使样本均匀混合;
通过底部温度控制板对样本加热,配合磁性搅拌子的旋转使样本均匀受热,达到指定的温度;
通过加热功率调节,使升温速度可控,以适用更广阔的样本处理过程。
一般的磁力搅拌器具有搅拌和加热两个作用。具体为:
(1)按流体形式可分为:轴向流搅拌器、径向流搅拌器和混合流搅拌器。
(2)按搅拌器叶面结构可分为:平叶式搅拌器、折叶式搅拌器及螺旋面叶式搅拌器。其中,具有平叶和折叶结构的搅拌器有桨式、涡轮式、框式和锚式搅拌器等,推进式、螺杆式和螺带式的桨叶为螺旋面叶结构。
(3)按搅拌用途可分为:低黏度流体用搅拌器和高黏度流体用搅拌器。其中,低黏度流体用搅拌器主要有推进式、长薄叶螺旋桨式、开启涡轮式、圆盘涡轮式、布鲁马金式、板框式、三叶后弯式、MIG型和改进MIG型等。高黏度流体用搅拌器主要有锚式、框式、锯齿圆盘式、螺旋桨式、螺带式(单缧带式、双螺带式)和螺旋-螺带式搅拌器等。
搅拌器是由多个参数决定的,用任何一个单一参数来描述一台搅拌机是不可能的。轴功率(P)、 桨叶排液量(Q)、压头(H)、桨叶直径(D)及搅拌转速(N)是描述一台搅拌机的五个基本参数。
桨叶的排液量与桨叶本身的流量准数,桨叶转速的一次方及桨叶直径的三次方成正比。而搅拌消耗的轴功率则与流体比重,桨叶本身的功率准数,转速的三次方及桨叶直径的五次方成正比。在一定功率及桨叶形式情况下,桨叶排液量(Q)以及压头(H)可以通过改变桨叶的直径(D)和转速(N)的匹配来调节,即大直径桨叶配以低转速(保证轴功率不变)的 搅拌机产生较高的流动作用和较低的压头,而小直径桨叶配以高转速则产生较高的压头和较低的流动作用。在搅拌槽中,要使微团相互碰撞,唯一的办法是提供足够的剪切速率。
磁力搅拌器适用于粘稠度不是很大的液体或者固液混合物的混匀操作。它是利用了磁场和漩涡的原理:将液体放入容器中后,将搅拌子同时放入液体中,当底座产生磁场后带动搅拌子成圆周循环运动,从而达到搅拌液体的目的。
磁力搅拌器操作简便,无级调速,能在较广的速度范围内对液体溶液进行精密稳定的搅拌,特别适合小体积样品的试验。磁力搅拌器可以分为不加热型、加热型、恒温型三类,有的机型增设了双向、多头搅拌功能。它是现代石油、化工、医药卫生、环保、生化、实验分析、教育科研的必备理想工具。